If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+8z-10=0
a = 2; b = 8; c = -10;
Δ = b2-4ac
Δ = 82-4·2·(-10)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12}{2*2}=\frac{-20}{4} =-5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12}{2*2}=\frac{4}{4} =1 $
| 10x2+-10=0 | | 56=7y+5= | | 10x-2+2=2+2x | | 1/3×12f-3=4f-1 | | 7x+3(5-3×)=5 | | 33=9+3y= | | 7+5y=22= | | 4(9-3x)=36 | | 10+8/3x=-4 | | (5/2)^x=(25/44)^x+2 | | -6=2n-7 | | 2m-1=-3 | | 4+2y=22= | | 5x^2+7x+2-5x^2-3=9x+10 | | D+-12=4(d+-6) | | 10r−6=4r | | 13(18)=11y-1 | | 9y+7=16= | | -6z=-7z+9 | | 8y+5=37= | | 6a+1=2a-16 | | 3x(x-1/4)=13/6 | | -8+9h=10h | | 16=9+1y= | | 4w+2w=24+3w | | (6a-5)+a=23 | | 4-3/5h=-17 | | 5d=-9+6d | | 1+3y=4= | | 6(24)-7=8y+17 | | 25x+615=-15x+975 | | 54=7y+7y= |